
Volume 7 Number 1 (2025) 

January – Juni 2025 

Page: 295-310 

E-ISSN: 2808-1390 

 

DOI: 10.37680/jcd.v7i1.6953 

Journal Of Community Development  

and Disaster Management
 

 

 

Published by Institut Agama Islam Sunan Giri( INSURI) Ponorogo Indonesia 

Accredited Sinta 6 

 

 

LSTM-Based PM2.5 Prediction Enhanced by Polynomial Features: 

Case Study in South Tangerang 

Wulan Kusuma Wardani1 

1Institut Teknologi Sumatera, Indonesia 

*wulan.wardani@tse.itera.ac.id 
 

 

Article history  Submitted: 2025/01/17; Revised: 2025/02/07; Accepted: 2025/02/21 

Abstract 

 

 

 

 

 

 
The significant impact of air pollution, particularly PM2.5, has driven 
mitigation efforts to reduce health and environmental risks through more 
accurate prediction systems. In this study, a Deep Learning approach using 
the LSTM method with the addition of Polynomial transformation features 
is proposed to predict PM2.5 concentrations. Historical PM2.5 data from 
South Tangerang City, Banten, was used to train and test the model. The 
results show that LSTM with polynomial features effectively captures 
temporal and non-linear patterns in the data, producing accurate and 
consistent predictions for both training and testing data compared to 
conventional machine learning methods such as XGBoost and SVR. 
Polynomial feature transformation significantly improved model 
performance, as evidenced by the reduction in prediction errors and 
increased accuracy compared to LSTM without polynomial features. The 
model also demonstrates adaptability to sudden fluctuations in air quality 
data. Although the prediction results closely align with actual values, slight 
discrepancies may arise due to external factors or model limitations. 
Therefore, the LSTM approach with polynomial feature transformation is an 
effective and promising method for PM2.5 prediction. 
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1. INTRODUCTION 

The global transition to renewable energy sources, particularly solar and wind 

power, plays a crucial role in combating climate change and reducing greenhouse gas 

emissions. However, the efficiency of these renewable energy systems can be 

significantly affected by environmental factors, notably air pollution. Particulate matter 

(PM), such as PM2.5, is one of the most significant pollutants due to its adverse effects 

on human health and the environment. Particulate matter consists of solid and liquid 

particles dispersed in the air, originating from a variety of sources, including fossil fuel 

combustion, motor vehicle emissions, road dust, and industrial and agricultural 

activities (Thangavel et al., 2022). The levels of PM, usually measured in micrograms per 

cubic meter (µg/m³), are tracked by monitoring networks to evaluate ambient air quality 

(Iwaszenko et al., 2024). The smaller the size of particulate matter, the more toxic it can 

be, as it can penetrate deep into the lower lobes of the lung (Wang et al., 2021). 

Particulate matter (PM) can accumulate on solar panels, leading to reduced energy 

transmittance and efficiency. Similarly, airborne particles can diminish air quality, 

impacting the performance of wind turbines. Research (Shariah & Al-Ibrahim, 2023) has 

shown a correlation between the reduction in power output by photovoltaic modules 

and the increasing thickness of dust deposits. Dust can absorb and scatter photons, 

thereby reducing the amount of light reaching the solar cells. Additionally, dust 

accumulation can affect the performance of wind turbines and increase maintenance 

loads and operational costs, especially during high-temperature periods (Al-Khayat et 

al., 2021). 

Due to the widespread and hazardous impact of particulate matter, the ability to 

predict accurately is essential. Reliable predictions can provide early warning and 

support future air pollution control policies. By utilizing previous data, particle 

concentrations are predicted by considering the possibility of similar patterns 

appearing in the future (Drewil & Al-Bahadili, 2022). Previous studies have explored 

various approaches to predict PM concentrations, with many utilizing machine 

learning techniques (Morapedi & Obagbuwa, 2023; Brokamp et al., 2018; Doreswamy 

et al., 2020). Several other studies have examined the prediction of particulate matter 

(PM) concentrations using deep learning, demonstrating its advantages in handling 

complex and non-linear data, particularly for time-series and spatial data (Sharma et 

al., 2025; Rad et al., 2025; Zhang et al., 2024). As a subset of machine learning, deep 

learning utilizes multi-layered neural networks to model complex data. A neural 

network should have three layers called input layer, hidden layer, and output layer, 

and neurons are the core entities of this neural network. One of the popular methods 



JCD Journal of Community Development and Disaster Management  

   

       297 

for handling time series data over a long period is Long Short-Term Memory (LSTM) 

(Priyanka et al., 2021). Initially, LSTM was introduced as a development of Recurrent 

Neural Networks to overcome long-term dependency problems (Hochreiter & 

Schmidhuber, 1997). Issues like analyzing particulate matter concentrations, which 

often exhibit sequential dependencies, are particularly well-suited for the inherent 

memory capabilities of LSTM (Ayturan et al., 2018). 

However, even though LSTM models are successful, their predictive 

performance is highly dependent on the quality and relevance of the input features. 

Feature engineering plays a critical role in improving the ability of these models to 

capture underlying patterns in the target data (Kurniawan et al., 2024). Feature 

engineering refers to the process of extracting, selecting and transforming features 

from raw data to create more representative and predictive input variables (He, 2024). 

Feature engineering consists of feature selection, feature extraction, feature 

construction, and feature scaling. Feature construction is carried out as an effort to 

create new features from existing raw data with the aim of enhancing the 

representation of information that can be utilized by the model, one of which is 

interaction features. Polynomial Features is one of the interaction feature techniques 

that generates new features by raising the power of input variables, for example, 

transforming x into x², x³, and so on. These properties enable the employment of more 

straightforward modeling techniques as part of data preparation, as some of the 

complexity of interpreting the input variables and their relationships (Brownlee, 2020). 

The integration of LSTM and polynomial features is expected to enable the model to 

leverage the strengths of both approaches. LSTM can learn complex temporal patterns 

from time-series data, while polynomial feature engineering can enrich data 

representation by adding non-linear features. The combined use of LSTM and 

polynomial features is anticipated to optimize the capture of linear relationships 

among input variables, thereby producing accurate and reliable predictions. 

Therefore, this study aims to explore the effectiveness of using polynomial 

feature engineering in improving the accuracy of PM2.5 predictions using an LSTM 

model, with a case study in South Tangerang City. As a buffer zone for the capital city 

of Jakarta, Indonesia, South Tangerang is an area with high population density, 

industrial zones, and rapid commercial growth. This has triggered environmental 

issues in the city, including air pollution, particularly particulate matter. Accurate and 

reliable predictions are crucial for developing effective air quality management 

strategies and providing valuable insights for the implementation and maintenance of 

renewable energy systems, especially for this region. By combining LSTM and 
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polynomial feature engineering techniques, the model is expected to better capture 

complex patterns in air pollution data collected from South Tangerang City. 

 

2. Research Methodology 

2.1. Study area and datasets 

This study uses data from South Tangerang City, located in Banten Province, 

Indonesia. This city is a rapidly growing urban area, with a growing population and 

various industrial, transportation, and residential activities that affect air quality. As 

one of the fastest growing cities in the Jabodetabek area, South Tangerang faces major 

challenges in controlling air pollution, even the city is recorded as the defending 

champion as the most polluted city in Indonesia (Mengintip Juara Bertahan Polusi Udara 

Tangsel, Buruk Di Tengah Malam, 2024). Based on IQAir observations on January 31, 2025 

at 15:00 WIB, the main pollutant in this city is PM2.5 at 21 μg/m3. This concentration is 

4.2 times higher than the normal limit of PM2.5 by WHO. This highlights the urgent 

need for effective air quality management strategies in the region. 

This study uses two main data, namely air pollution data, which includes PM2.5 

target data and meteorological data. Both datasets are critical for understanding the 

relationship between atmospheric conditions and air pollution levels in South 

Tangerang. Daily air pollution data were obtained from the Kaggle dataset for the 

period 2020-2022, providing a comprehensive picture of air pollution fluctuations, 

including PM2.5 in South Tangerang City during that period. Meanwhile, 

meteorological data were obtained from the BMKG (Meteorology, Climatology, and 

Geophysics Agency) Online Database Center, precisely taken from the Banten 

Climatology Station. The meteorological data used include daily data on temperature, 

humidity, rainfall, wind speed, atmospheric pressure, rainfall, and sunshine duration. 

These variables are essential for understanding how atmospheric conditions effect the 

dispersion, accumulation, and chemical transformation of air pollutants (Rodríguez-

Sánchez et al., 2024). For example, wind speed and direction can affect the transport of 

pollutants, while rainfall can contribute to the removal of particulate matter from the 

atmosphere through wet deposition. These two main data are used in PM2.5 

prediction to improve model quality by providing more relevant information. 

Description of the datasets used related to naming during modeling and the units used 

are described in table 1.  
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Table 1. Desciription of datasets 

Parameter Dataset Name Unit 

Particulate Matter 2.5 PM2.5 μg/m3 

Particulate Matter 10 PM10 μg/m3 

Sulfur Dioxide SO2 μg/m3 

Carbon Monoxide CO μg/m3 

Sodium Dioxide NO2 μg/m3 

Average temperature Temp_avg °C 

Relative humidity Humidity % 

Precipitation Prec Mm 

Sunshine duration Sunshine hour 

Average wind speed Wind_avg m/s 

 

 

2.2 Preprocessing 

Preprocessing data is carried out to ensure that the data used is clean and consistent 

by applying various transformations, making it ready to be processed by the model 

(Kanellopoulos & Pintelas, 2006). The first step is to identify and handle any data points 

in a dataset that are clearly problematic in terms of measurement (outliers or missing 

values) using interpolation methods, which involve estimating and filling in 

problematic values based on surrounding data. This method is effective for handling 

time series data as it considers temporal patterns. Additionally, incomplete or noisy data 

is also cleaned to avoid bias in model training. Secondly, polynomial feature 

transformation is applied to capture non-linear correlations between features by 

expanding the feature space through the combination of original numerical 

characteristics in polynomial way (Parvathi et al., 2024). This step helps enhance the 

model's flexibility in learning complex patterns in the data. This technique is performed 

by generating new features by increasing the original features to various powers up to 

a specified degree (n) and creating combinations of these powers. As a result, new 

features are created, including x1, x2, x3, ..., xn. These features are then combined with 

all possible combinations (interaction features), such as the multiplication of x2 and x3, 

or other combinations (Parvathi et al., 2024). The number of polynomial feature 

combinations grows exponentially as the degree n increases. This means that the higher 

the polynomial degree chosen, the newer features are generated. In this study, n is set 

to 3, meaning polynomial features up to the third degree are created from the existing 

features. 

The next crucial step in preprocessing is to standardize the data scale using 

normalization methods such as StandardScaler. Normalization is essential because the 
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features in a dataset often have different scales. Data normalization involves 

transforming numerical data into new data with smaller values and a predefined range 

(Alshdaifat, 2020). The StandardScaler is implemented from z-score normalization by 

transforming each feature to have a mean of 0 and a standard deviation of 1 using the 

following equation: 

𝑦𝑖 = 𝑧 =
𝑦𝑖−�̅�𝑖

𝜎
      (1) 

Where �̅�𝑖 and σ representing the mean and standard deviation of each data point 

(Mohamad & Usman, 2013). This normalization step is crucial to ensure that all features 

have a uniform scale, so no feature dominates the model's learning process due to 

significant scale differences. Thus, the data that has gone through the preprocessing 

stage is ready to be processed by the LSTM model to predict PM2.5 concentrations. The 

dataset summary of each parameter is presented in Table 2. 

Table 2. Dataset summary 

Parameter 
Min 

1st 

Quartile 
Median mean 

3st 

Quartile 
Max 

PM2.5 19.0 35.0 45.0 44.2 53.0 66.0 

PM10 3.0 13.0 17.0 18.7 23.0 60.0 

SO2 0.0 1.0 14.0 10.6 16.0 28.0 

CO 0.0 10.0 12.0 18.8 21.0 164.0 

NO2 0.0 0.0 3.0 2.4 4.0 8.0 

Temp_avg 24.6 27.1 28.0 27.9 28.7 32.5 

Humidity 53.0 77.0 82.0 81.2 86.0 98.0 

Prec 0.0 0.6 4.4 11.4 15.8 208.9 

Sunshine 0.0 2.5 4.8 4.7 6.8 12.5 

Wind_avg 0.0 1.0 1.0 1.5 2.0 4.0 

 

2.3 LSTM Implementation 

Long Short-Term Memory (LSTM) is an advancement of Recurrent Neural 

Networks (RNN) designed to address the vanishing gradient problem caused by its 

limitations in capturing complex temporal relationships, especially those involving 

long-term dependencies (Hochreiter & Schmidhuber, 1997). RNN itself is a type of 

artificial neural network that has the ability to retain information from previous steps 

through a feedback loop mechanism (Grossberg, 2013). The concept behind LSTM is 

its ability to maintain memory state over long periods of time due to the inclusion of 

memory cells and gating mechanisms. This memory state incorporates gates that 

control the flow of data within the cell. Each LSTM cell contains this memory state, 
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which adjusts the information from previous states based on the current input and the 

gates' operations (Drewil & Al-Bahadili, 2022). In order to capture long-term 

dependencies, LSTM uses a three-layer method (input layer, forget layer, and output 

layer) that regulates information flow and permits modifications to the cell state 

vector, which is transmitted iteratively (Lindemann et al., 2021).  

As shown in Figure 1, at each time step t, the data flow starts with the input 𝑋𝑡 

(black circle) and the previous hidden state ℎ𝑡−1 (orange circle) into the LSTM cell, 

along with the previous cell state 𝐶𝑡−1 (light blue circle). The data is first processed by 

the Forget Gate, which uses a sigmoid function (𝜎) to determine which part of the 

previous cell state should be forgotten or retained, with values between 0 (forgotten) 

and 1 (retained). Next, the data is processed by the Input Gate, which also consists of 

sigmoid and tanh functions; the sigmoid determines which elements will be updated, 

while tanh generates the candidate new value 𝐶𝑡 that will be added to the cell state. 

After that, the cell state is updated with a combination of the retained information from 

the old cell state and the new information deemed relevant, according to the formula 

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶�̅�. After the cell state update, the Output Gate determines the new 

hidden state ℎ𝑡 (red circle) using the sigmoid to select the portion of the cell state to be 

output, and then the result is multiplied by the normalized cell state value through the 

tanh function. The hidden state  ℎ𝑡 becomes the output of the LSTM cell and will be 

used for the next time step or as input to the next layer in the network.  

 
Figure 1. Architecture of LSTM (Guo et al., 2020) 

 

In this study, the Long Short-Term Memory (LSTM) model was implemented 

using the TensorFlow/Keras deep learning library with Python. Polynomial Features 

transformation was applied up to the 4th order to capture non-linear interactions 
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between variables, followed by normalization using StandardScaler. The data was 

split into training data (70%) and testing data (30%) using the train_test_split method 

without shuffling (shuffle=False) to preserve the temporal order of the data. To handle 

time series data, the TimeseriesGenerator is used to structure the data with a lookback 

length of 7, meaning the model utilizes the past 7 days to predict the 8th day. The batch 

size is set to 35 to determine the number of samples processed before updating the 

model weights. 

The developed LSTM model consists of: 

1. A first LSTM layer with 150 units, using ReLU activation and L1 regularization 

(0.0005) to reduce model complexity and prevent overfitting. 

2. A dropout layer (15%) after the LSTM to enhance model generalization. 

3. A Dense layer (10 neurons) with linear activation, serving as an additional layer 

before the final output. 

4. A dropout layer (10%) after the first Dense layer. 

5. A Dense layer (1 neuron) as the output layer with linear activation to 

continuously predict PM2.5 values. 

The model was compiled using the RMSprop optimizer with a learning rate of 0.0005 

and the Mean Squared Error (MSE) loss function. During training, two callbacks were 

used: 

• EarlyStopping to stop training if val_loss does not improve after 10 epochs. 

• ReduceLROnPlateau to reduce the learning rate by 50% if val_loss does not 

improve after 8 epochs, with a minimum learning rate of 0.0001. 

The model was trained for a maximum of 300 epochs with validation using test data. 

After training was completed, the model was evaluated using R² (Coefficient of 

Determination), RMSE (Root Mean Squared Error), and MAPE (Mean Absolute 

Percentage Error) metrics to measure prediction accuracy on both training and test 

data. The mathematical equations for each evaluation metric are explained below 

(Chicco et al., 2021): 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖

∗)2𝑁
𝑖=1

∑ (𝑦𝑖−�̅�)
2𝑁

𝑖=1

,     (2) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦𝑖

∗)2𝑁
𝑖=1

𝑁
,    (3) 

 

𝑀𝐴𝑃𝐸 =
100%

𝑁
∑ |

𝑦𝑖−𝑦𝑖
∗

𝑦𝑖
|𝑁

𝑖=1 ,    (4) 

Where 𝑦𝑖 as actual values; 𝑦𝑖
∗ as predicted values; �̅� as mean of the actual values; 𝑁 as 

number of data points. The R² is the Pearson correlation between the predicted and 

actual PM2.5 concentration, and it represents how close predicted values to the actual 
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PM2.5 concentration. MAPE indicates the magnitude of the prediction error relative to 

the actual value in percentage. Meanwhile, RMSE provides a clear picture of the 

model's error in the original units. The effectiveness and validity of the proposed 

LSTM model are also evaluated by comparing its performance with several machine 

learning methods, including XGBoost (Extreme Gradient Boosting) and SVR (Support 

Vector Machine). 

 

3. RESULTS AND DISCUSSION 

3.1. Prediction Accuracy 

Table 3 shows the evaluation metric results from the LSTM, XGBoost, and 

SVR methods, both on the training and testing data. Overall, the LSTM model 

with polynomial feature transformation provides the best performance 

compared to XGBoost, LSTM without polynomial features, and SVR. The LSTM 

with polynomial feature transformation not only superior in prediction accuracy 

but also show good consistency between the training and testing data.  
 

Table 3. Evaluation Metric Results of Models 

Methods 
Training Dataset Testing Dataset 

RMSE R2 MAPE RMSE R2 MAPE 

LSTM with Polynomial 

Features 

2.43 0.95 4.32% 2.86 0.90 5.86% 

XGBoost 2.88 0.93 5.23% 3.13 0.88 6.55 

LSTM saja 4.01 0.87 7.58% 3.26 0.87 6.64% 

SVR 4.62 0.83 7.37% 3.67 0.83 7.21% 

 

Lower prediction errors and higher correlation with the actual values indicate 

that the additional features from the polynomial transformation contribute positively 

to the LSTM learning process. This is clearly seen when comparing the evaluation 

results of the LSTM model with polynomial features and the LSTM without these 

features, LSTM model without feature transformation shows a significant 

performance decline. The decline in performance of the LSTM model without 

polynomial features indicates that polynomial feature transformation plays a crucial 

role in improving prediction accuracy. This transformation allows the model to better 

capture non-linear relationships in the PM2.5 data, which might be difficult for the 

LSTM to learn directly. By expanding the features before processing them into the 

model, the LSTM can more effectively learn the complex patterns present in the data. 
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Meanwhile, XGBoost shows fairly good performance, although slightly below 

LSTM with polynomial features. This model can explain most of the data variation, 

but there is increasing prediction error when tested on the testing data. Aalthough 

strong in handling tabular data, XGBoost is less optimal in capturing the temporal 

pattern complexities present in the PM2.5 data. On the other hand, SVR ranks last in 

terms of performance. Although it can still provide good predictions, higher 

prediction errors and lower accuracy values indicate that SVR is less suitable for time 

series prediction of PM2.5 compared to previous methods. 

The success of LSTM with polynomial features in handling time series data makes 

it a more optimal choice for PM2.5 prediction compared to conventional machine 

learning methods like XGBoost and SVR. However, further exploration is still needed, 

such as hyperparameter optimization or the use of other techniques like the attention 

mechanism, to further improve the model's performance. 
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3.1. Model Performance During Training 

Figure 2. (a) Training loss and validation loss curves of XGBoost models (b) training 

loss and validation loss curves of LSTM with polynomial features 

Figure 2 shows the training loss and validation loss curves during the model 

training process. Graph 2(a) illustrates the change in Root Mean Squared Error (RMSE) 

to the number of iterations in the XGBoost model. In the XGBoost model, both the 

training loss and validation loss decrease steadily as the number of iterations increases. 

However, the difference between the two losses remains consistent, indicating that the 

model does not suffer significant overfitting. That’s XGBoost has effectively learned 

the patterns from the data while maintaining its performance on unseen data.  

Meanwhile, the convergence pattern in the LSTM model with polynomial features 

(a) 

(b) 
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shows a sharp decline at the beginning of training before stabilizing close to zero as 

the epochs increase. The graph illustrates that the training loss and validation loss 

move in parallel without significant gaps, indicating that the model does not 

experience substantial overfitting or underfitting. In other words, the LSTM model 

successfully adjusts its weights optimally and able to generalize well to the validation 

data. From the two graphs shown in Figure 2, the LSTM model with polynomial 

features demonstrates a smoother and more stable long-term convergence pattern, 

which could indicate that this model is better at capturing complex patterns in PM2.5 

data compared to XGBoost. 

Figure 3 shows a comparison between the actual PM2.5 values (blue line) and the 

predicted values (red dashed line) generated by the XGBoost and LSTM with 

polynomial features models. It can be observed that both models perform quite well 

in following the data trends, but there are differences in the level of accuracy and 

responsiveness to data changes. The XGBoost model tends to provide more stable and 

smooth predictions. Although it can capture the main patterns of the PM2.5 data, there 

are some larger deviations during sharp changes in values. This model appears slower 

in responding to significant spikes and drops, which may indicate that XGBoost has 

limitations in understanding complex patterns in the data. 

Meanwhile, the LSTM model with polynomial features demonstrated better 

performance in capturing more complex fluctuations. From Figure 3.b, the predictions 

of this model are closer to the actual values compared to XGBoost ini Figure 3.a, 

especially in areas with sharp spikes or drops. This capability indicates that LSTM is 

more adaptive to non-linear patterns in the data. However, its high sensitivity to data 

variations can also increase the risk of overfitting, especially if the model adapts too 

much to the patterns in the training data. So overall, the LSTM model with polynomial 

features outperforms XGBoost in predicting PM2.5, especially in capturing rapid and 

complex changes in the data. Nevertheless, the choice of model still depends on 

specific needs, where XGBoost may be a more efficient option if prioritizing speed and 

prediction stability, while LSTM is more suitable for scenarios requiring deeper 

modeling of non-linear patterns. 
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Figure 3. (a) Actual vs Predicted PM2.5 concentration by XGBoost model (b) Actual vs 

Predicted PM2.5 concentration by LSTM with polynomial features 

 

4. CONCLUSION  

In this study, LSTM model with polynomial features was applied to predict 

PM2.5 concentration based on historical data collected from South Tangerang City, 

(b) 

(a) 
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Banten. The results indicated that this approach is capable of capturing complex 

patterns in the data, including trends and fluctuations in PM2.5 values. The model 

demonstrated a strong ability to follow the movement of actual values, with 

predictions closely matching observational data. Additionally, it shows good 

consistency between training and testing data. This implies that the polynomial feature 

transformation is essential for improving data representation, especially when it 

comes to capturing intricate non-linear correlations, while the LSTM is successful in 

identifying temporal patterns in the data. 

A significant decline in the performance of the LSTM model without 

polynomial feature transformation indicated that polynomial feature expansion 

greatly contributed to the improvement of prediction accuracy. This transformation 

allowed the model to better learn the characteristics of data that may be difficult for 

LSTM to capture, both in short-term and long-term variations in PM2.5 patterns. 

Additionally, this approach enabled the model to be more adaptive to sudden changes, 

which frequently occured in air quality data. Thus, the combination of LSTM and 

polynomial feature transformation has been proven effective in enhancing the 

predictive ability of the model.  

Although the prediction results showed a high degree of alignment with the 

actual data, there are still some minor discrepancies that may be caused by external 

factors, that not included in the input features or limitations of the model in capturing 

certain patterns. Therefore, further development can be pursued through exploration 

of LSTM architecture optimization techniques, hyperparameter tuning, or the 

integration of additional features that are more representative of PM2.5 dynamics. 
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