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Abstract 

 

 

 

 

 The irrigation systems that use canal command require effective, but not 
expensive, strategies to quantify annual water requirements and water losses. 
Field-based traditional methods are all costly and cumbersome to generalize. 
The current research paper demonstrates how satellite imagery and a crop 
water need model were applied to estimate the extent of water lost or utilized 
during the season in the 354-acre command of watercourse number 5AR in the 
UC Chukhi district, Hyderabad, Pakistan. The CROPWAT model was used to 
estimate reference evapotranspiration (ET0) and crop evapotranspiration 
(ETc) using 5 years of meteorological data. Landsat eight images processed in 
ArcGIS 10.1 provided a classified map of major crops and their acreage. Wheat 
(24.5 percent of the hectares under cultivation) was the primary crop, followed 
by mango (17.5 percent), banana (14.0 percent), sugarcane (7.1 percent), and 
others. 29.6 percent of the hectares were under cultivation, while the remaining 
70.4 percent were not. Berry volumetric demands were 117.7 acre-ft (wheat), 
81.56 acre-ft (mango), 169.4 acre-ft (banana), 77.4 acre-ft (sugarcane), and 66.38 
acre-ft (other crops). The surface water and ground water were 430.3 and 
403.04 acre-ft, respectively, and the seasonal supply was 833.45 acre-ft. The 
seasonal losses incurred were estimated at 279.6 acre-ft, equal to 33.5 percent 
of the amount of water supplied, 15.0 percent of the conveyance losses, and 
18.5 percent of the application losses; application losses exceeded conveyance 
losses by about 3.5 percentage points. The results suggest that combining 
CROPWAT and Landsat-based crop mapping with straightforward discharge 
measurements can offer a feasible, cost-effective, and transferable method for 
quantifying seasonal water losses and contribute to planning and policy-
making for irrigation decisions in canal-command contexts of a similar nature. 
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1. INTRODUCTON 

The world's food and water resources are under unprecedented pressure due to rising population, 
urbanisation, and changes in dietary habits  (Amir & Habib, 2015; Munir et al., 2021). There are growing 
demands on food crops and competing demands on available freshwater from the agricultural, 
domestic, and industrial sectors (Abd El-Mageed et al., 2021; McBean, 2016). Given that agricultural 
activities are the highest users of fresh water, there is a need to ensure that irrigation systems can work 
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more effectively to boost food security, sustain rural livelihoods, and protect aquatic life amid the 
increasing water crisis (Ashraf, 2016). The majority of semi-arid areas, such as Pakistan, continue to use 
canal systems for surface irrigation during food production (Panella et al., 2020; Talpur et al., 2023; 
Wang et al., 2024). The country has built one of the largest irrigation systems in the world over the past 
century, on which Kharif (summer) and Rabi (winter) crops are grown. Some staple and cash crops, 
such as wheat, rice, sugarcane, cotton, fruits, and vegetables, are highly dependent on canal water levels, 
which have not been altered (Farooq et al., 2009). Agriculture, therefore, takes a central position in the 
national economy and the countryside, and it also plays a central role in employment (Commission, 
2001). The canal-command system, however, is compromised by low conveyance and application 
efficiencies; there is no equity between the water passing to the head and tail reaches, and no knowledge 
of the whereabouts or quantities of water losses along the supply line (Janjua & Mohammad, 2008). The 
water under a normal canal command is diverted at the headworks and directed into distributaries, 
which may include minor and watercourses, and thence to specific fields. The losses are made at various 
stages through seepage, leakage, overtopping, operating wastage, and non-beneficial evaporation 
(Hulme, 2009). The other losses are incurred at the farm level due to unlevelled fields, improper 
irrigation patterns, and irrigation at the wrong time. These losses reduce the ratio of water actually used 
in positive crop evapotranspiration and, consequently, water productivity, which can only increase 
head-tail inequity (Seckler, 1998). The quantification of seasonal water demand and water losses at the 
scale of individual watercourses thus enables the identification of technical and socially viable steps to 
enhance the performance of the irrigation process (Jan et al., 2017).  

More traditional steps for assessing the performance of canals and watercourses at a fine scale are 
based on intensive field trials, such as inflow-outflow tests, seepage tests, ponding tests, and plot-scale 
water balance, which are time-consuming, labour-intensive, and expensive (Kamal, 2009). They are 
difficult to duplicate across large areas of command, and in most cases, they can only provide snapshots 
of what occurred, not an integrated seasonal analysis. Consequently, effective information on high-
quality water and high spatial and temporal quality is generally inaccessible to decision-makers because 
of the assessment of crop water needs, water supply, and losses within a particular command (Khan et 
al., 2016). The latest developments in satellite remote sensing and geographic information systems (GIS) 
offer powerful, cost-effective tools to support and expand conventional field-based measurements. 
Multispectral satellite images are used to delineate land-use and crop patterns, identify areas with 
various crops, and identify fallow or uncultivated lands (Rosegrant et al., 2002). This may be combined 
with climatic data and crop-specific models, such as CROPWAT, to predict crop evapotranspiration 
(ETc) and the seasonal water requirements of each major crop in a command (Gain et al., 2016). These 
estimates of demand, along with observed canal and groundwater supply, enable the calculation of 
seasonal water losses at the level of individual watercourses. Nevertheless, even with these benefits, co-
location of satellite images, crop water demand models, and field measurements to determine seasonal 
water losses is not at the watercourse scale in the regions covered by the canal-command systems in 
Pakistan (Iqbal & Iqbal, 2015). Specifically, planners and managers will employ direct, mobile methods 
by leveraging convenient access to satellite imagery, hydrometeorological data, and standard software 
(Brears, 2016). The current study, in this instance, utilizes a hybrid remote sensing and modelling 
approach to the 354-acre land of watercourse 5AR in Union Council (UC) Chukhi, in the district of 
Hyderabad, under Kunner-II minor.  

The distribution of crop patterns and the area covered by the main crops are mapped in ArcGIS 
using Landsat imagery, and climatic data are used in the CROPWAT model to estimate crop 
evapotranspiration and the seasonal water requirement of individual crops. These demand estimates 
are summed to obtain the seasonal water used in the command area, which is then compared with actual 
surface water deliveries and groundwater abstraction to obtain the total seasonal water supply (Bangira, 
2018; Pereira, 2017). A seasonal supply-and-demand model estimates total water losses and breaks them 
down into conveyance and application components, providing a viable, cost-effective model for 
diagnosing irrigation performance and, in the future, similar canals' command models. 
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2. METHOD  

2.1 Study area 
The research was conducted in the command area of watercourse 5AR off-take from Kunner-II 

minor in the district of Hyderabad, Pakistan, in the Union Council (UC) Chukhi. Water is supplied to 
the watercourse through a closed-type mogha outlet with a 3-inch orifice and a height of 1.2 ft. The area 
is a mix of orchards and field crops irrigated with a blend of canal water and personal tube wells. An 
ArcGIS georeferenced boundary of UC Chukhi and the 5AR command watercourse was drawn and 
served as the spatial mask for all subsequent analyses (Figure 2.1). 

 
 

 
Figure 2.1. Map of the study area of UC Chukhi 

 
2.2 Overall Approach 

Seasonal water losses were measured by comparing crop water demand with the total water 
supplied to the command area during the Rabi season. The procedure had four major elements: 

 Estimates on the crop water requirements (demand) based on the CROPWAT model. 
 The satellite imagery of Landsat 8 and GIS were employed to map the pattern of the cropping and 

to compute and calculate the area under each crop. 
 Crops water demand transformation and crop land transformation into volumetric water demand 

of the command area. 
 Seasonal surface and ground water supply is estimated, and on the contrary, total, conveyance, 

and application losses are computed out of the difference between the supply and demand. 
2.3 Crop water requirement 

2.3.1 Reference evapotranspiration (ETo) 
The study computed reference evapotranspiration (ETo) using the CROPWAT model, based on 

meteorological data from the study area. They were fed monthly climatic inputs (minimum and 
maximum air temperature, relative humidity, wind speed, and sunshine or radiation) into CROPWAT, 
and ETo was computed for each month of the year using the software's standard procedure. Monthly 
ETo values (mm day-1) were then calculated to estimate crop evapotranspiration. 
2.3.2 Crop evapotranspiration (ETc) 

The CROPGWAT calculated crop evapotranspiration (ETc) of each crop as the product of 
reference evapotranspiration and crop coefficient: 

𝐸𝑇𝑐 = 𝐸𝑇𝑜 × 𝐾𝑐 
We have the expression ETc = ETo, where ETc is the depth (mm), ETo is the reference 

evapotranspiration (mm day-1), and Kc is the crop coefficient for the crop and growth stage. Crop 
calendars (planting and harvesting dates) and stage-specific Kc values were provided for each of the 
major crops grown in UC Chukhi (wheat, mango, banana, sugarcane, berries, lentil, and other minor 
crops). Monthly and seasonal ETc of every crop in the Rabi season were then calculated using 
CROPWAT (Reddy et al., 2020). 
2.3.3 Leaching requirement 

To account for the additional water needed to control soil salinity, the leaching requirement (LR) 
was estimated using the Rhoades equation: 
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 LR: minimum fraction of leaching needed to maintain root zone salinity at the salt tolerance of 
the crop (ECe). 

 ECw: salinity of the used irrigation water (dS -1). 
 ECe: mean salinity of soils to which the crop can be subjected on saturation extract (dS m -1). 

ECw was divided by ECe to obtain the leaching requirement per crop, and the leaching depth 
was calculated and subtracted from ETc to achieve the total depth of water that was needed at the field 
per crop. 
2.4 Satellite imagery and cropping pattern 
2.4.1 Image acquisition 

The area of each crop in the study area was determined using the Landsat 8 imagery. Data from 
the Multispectral Landsat 8 Operational Land Imager (OLI) captured in December 2017 (Rabi season) 
were downloaded from the USGS GloVis portal (https://glovis.usgs.gov) (Figure 2). The spectral 
signatures of the key Rabi crops were to be taken at the developed growth stages of the crops, which 
was the reason why this period was chosen. Radiometric data (gain, bias, sun elevation, etc.) needed for 
pre-processing were extracted from the image metadata (Pereira, 2017). 

 

 

Figure 3.3. The Landsat image was acquired for the study from USGS GloVis 

2.4.2 Image preprocessing and clipping 
The Landsat 8 image of the Hyderabad district was imported into ArcGIS 10.1. The original image 

was clipped into two steps with the help of the district boundary shapefile and the UC Chukhi 
boundary: 

 The Hyderabadi district was extracted from the entire Landsat picture. 

 The UC Chukhi and watercourse 5AR command area was extracted from the district image by the 
Spatial Analyst toolbox using the Extract by Mask function. 
The obtained subset image was classified, and the area within the command location was estimated. 
2.4.3 Supervised classification 

Supervised classification of the Landsat 8 image subset in ArcGIS 10.1 was performed to classify 
it into land-cover/crop classes. The principal crops and other land uses in the command (e.g., wheat, 
mango orchards, banana, sugarcane, berries, lentils, various crops, fallow land, and non-agricultural 
areas) were digitised into training samples (Kingra, 2018). The multispectral bands were used to create 
a thematic map of land-cover classes using a maximum likelihood classifier. The obtained classified 
map was visually verified and filtered using local information on the cropping pattern and the spatial 
distribution of orchards and field crops (Babu et al., 2015). 
2.5 Estimation of crop-wise area 

Polygons that represented each class of land-cover in the classified raster were selected as 
polygons for each class, transformed to the required format of the attribute table, and their areas were 

S# Image Acquisition date Path Row DOY D θs 

1 13-Dec-2021 151 42& 43 347 0.98446 38.033677 
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calculated in ArcGIS (Fritz et al., 2015). All polygons of a single crop category were added together to 
have the total area of the given crop in the command. Hectares or acres were used to report area, in line 
with local practice. 
2.6 Computation of total water volume required in the study area 

The seasonal water demand of each crop was calculated as the seasonal water requirement (ETc 
and leaching depth in mm) of a crop multiplied by the area (in hectares or acres) of the crop. Depths 
were converted to volumes using standard unit conversions (acre-mm and acre-ft). The volumetric 
requirements of each crop were then added to get the cumulative water seasonal requirement of the 
watercourse 5AR command area (Hegde et al., 2024). 
2.7 Water quantum available 

Irrigation supplies in the study area are derived from both surface water and groundwater: 
2.7.1 Surface water 

The supplies at Canal 5AR were measured at the Mogha outlet. Discharge measurements were 
conducted in the channel, and the hours of operation of the watercourse during the Rabi season were 
determined. Seasonal surface-water volume was calculated by summing discharge over the total 
operating time and dividing by that time. 
2.7.2 Groundwater  

The discharge and operating hours of tube wells in the command area provided an estimate of 
the groundwater supply available in this area. The rate of each tube well was determined, and the 
number of hours of pumping per day or season was recorded to determine the quantity of groundwater 
pumped during the season. The groundwater volume was obtained by summing the contributions from 
all operating tube wells. The seasonal water quantum that could be applied to the command area was 
determined as the sum of surface water and groundwater quantities (MacLean & Congalton, 2013). 
2.8 Estimation of seasonal water losses 

Total seasonal water losses in the command area were derived as the difference between total 
water supplied (surface plus groundwater) and total crop water demand (including leaching 
requirement) for all crops: 

𝑇𝑜𝑡𝑎𝑙	𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑇𝑜𝑡𝑎𝑙	𝑠𝑢𝑝𝑝𝑙𝑦 − 𝑇𝑜𝑡𝑎𝑙	𝑑𝑒𝑚𝑎𝑛𝑑 
The total losses were apportioned into conveyance and on-farm application components by 

measuring conveyance losses along the watercourse (Hunt et al., 2024). The conveyance losses consisted 
of the percentage of supply lost between the watercourse head and the fields due to seepage, leakage, 
and operational wastage. The balance of total losses and conveyance losses was termed application 
losses and was non-beneficial when used in field application and distribution. 

This hybrid application of CROPWAT, Landsat-based crop imaging, and measured irrigation 
supply provided a consistent, seasonal measure of water demand, water supply, and routine 
conveyance and application losses for the 5AR control of the watercourse in UC Chukhi. 

3. FINDINGS AND DSICUSSIOUN 

3.1 Climatic conditions and reference evapotranspiration 
Weather statistics confirm the semi-arid conditions of the UC Chukhi during the Rabi season, 

which were entered into CROPWAT. The lowest temperatures ranged from 10.9 C in January to 25.9 C 
in September, and the highest temperatures were 25.2 C and 37.6 C, respectively. Relative humidity was 
about 46.5 and a little more in September-December. Solar radiation of 14.4-20.5 MJ m -2 day -1, wind 
speeds of 156-467 km day -1, and bright sunshine of 8.2 h day -1 were experienced during the Rabi 
months. These circumstances led to an apparent seasonal trend of reference evapotranspiration (ETo) 
computed by CROPWAT. September had the highest of 8.06 mm day -1, and December had the lowest 
of 3.58 mm day -1, and slightly higher in February, 4.44 mm day -1. The average ETo during the period 
was 5.12 mm day-1, indicating that even in the winter season, evaporative demand cannot be neglected 
and must be considered in irrigation planning. 



Social Science Academic 

138  

Table 3.1. The CROPWAT model was used to calculate the reference evapotranspiration (ETo) during 
the study period at UC Chukhi. 

 
Month Min Temp Max Temp Humidity Wind Sun Rad ETo 

 °C °C % km/day hours MJ/m²/day mm/day 
September 25.9 37.4 58 467 8.4 20.5 8.06 

October 22.4 37.6 43 233 9 18.9 6.57 
November 17 32.5 42 156 8.1 15.5 4.43 
December 12.2 26.8 48 173 8.1 14.4 3.58 

January 10.9 25.2 45 190 7.5 14.5 3.62 
February 13.7 29 43 190 8.1 17.3 4.44 
Average 17.02 31.42 46.5 234.8 8.2 16.85 5.12 

 
 3.2 Crop water requirements 

The CROPWAT simulations provided monthly and seasonal crop water demand (ETc) for the 
primary crops in the 5AR command area of the watercourse. 
3.2.1 Wheat 

 The seasonal water requirement of wheat, which is planted between October and February, 
reached the highest water demand in October, when the weather is quite warm, and the crop grows at 
a very high rate. Still, it goes down as the temperature and the crop's coefficient decrease in January and 
February. 
Table 3.2. Water demand of wheat monthly and seasonally (ETc). 

Month Eto mm/day Kc Value Days Etc mm/month 
October 6.57 0.7 31 142.56 

November 4.43 0.775 30 102.99 
December 3.58 1.15 31 127.62 

January 3.62 0.192 31 21.54 
February 4.44 0.15 28 18.64 

Total   151 413.38 
 
3.2.2 Mango 

Mango orchards, being perennial crops, exhibited seasonal ETc of 605.73 mm in September and 
February. The most significant monthly ETc (278.07 mm) was observed in September, when ETo was 
high, and the canopy was well developed, but this gradually decreased in the cooler months. 
Table 3.3. Mango monthly and seasonal water requirement (ETc). 

Month Eto mm/day Kc Value Days ETc mm/month 

September 8.06 1.15 30 278.07 

October 6.57 0.6 31 122.20 

November 4.43 0.6 30 79.74 

December 3.58 0.6 31 66.58 

January 3.62 0.25 31 28.05 

February 4.44 0.25 28 31.08 

Total(mm)   181 605.73 
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3.2.3 Banana 

Banana had the highest seasonal water requirement, with an ETc of 1041.56 mm and a monthly 
ETc of 290.16 mm, indicating that it is a highly water-demanding crop. 
Table 3.4. Banana monthly and seasonal water requirement (ETc). 

Month ETo mm/day Kc Value Days ETc mm/month 

September 8.06 1.2 30 290.16 

October 6.57 1.2 31 244.40 

November 4.43 1.2 30 159.48 

December 3.58 1 31 110.98 

January 3.62 1 31 112.22 

February 4.44 1 28 124.32 

Total(mm)   181 1041.56 

 
3.2.4 Sugarcane 

The volume of water required by sugarcane during the study period was 951.83 mm, and the 
maximum ETc occurred in October, when both atmospheric demand and crop coefficients were high. 
The duration of its growth and constant water requirement highlight its effect on the seasonal water 
budget, despite the lower areal coverage compared to wheat and mango. 
Table 3.5. Water Requirement of Sugarcane Crop 

Month ETo mm/day Kc Value Days ETc mm/month 

September 8.06 0.4 30 96.72 

October 6.57 1.25 31 254.58 

November 4.43 1.25 30 166.12 

December 3.58 1.25 31 138.72 

January 3.62 1.25 31 140.27 

February 4.44 1.25 28 155.4 

Total(mm)   181 951.83 

 
3.2.5 Berries and lentils  

The seasonal ETc for berries was 373.85 mm, and greater demand was observed in November 
and December. Lentil had a demand of 472.87 mm, with the highest demand in October. Even though 
their individual ETc values are lower than those of banana and sugarcane, they still contribute to total 
demand, primarily when concentrated in particular sub-areas. 
Table 3.6. Berry's monthly and seasonal water requirement (ETc). 
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Month ETo mm/day Kc Value Days ETc mm/month 
September 8.06 0.3 30 72.54 

October 6.57 0.3 31 61.10 
November 4.43 0.5 30 66.45 
December 3.58 0.5 31 55.49 

January 3.62 0.5 31 56.11 
February 4.44 0.5 28 62.16 

Total(mm)   181 373.85 
 
Table 3.7. Monthly and seasonal water demand (ETc) of lentil. 

Month ETo mm/day Kc Value Days ETc mm/month 
September 8.06 0.4 30 96.72 

October 6.57 0.63 31 128.31 
November 4.43 0.86 30 114.29 
December 3.58 0.9 31 99.88 

January 3.62 0.3 31 33.66 
Total(mm)   153 472.87 

 
On the whole, the findings indicate the dominance of perennial orchard crops (banana, mango) 

and sugarcane in the seasonal distribution of water demand per unit area. In contrast, the water demand 
of wheat and lentil is less significant. 
3.3 Cropping pattern and area under each crop 

The Landsat 8 image of the 354 acres of the command of watercourse 5AR was classified to depict 
a broad range of cropping, primarily wheat and orchards. The wheat, mango, banana, and sugarcane 
were 86.8 acres (24.5% of the command), 62 acres (17.5%), 49.6 acres (14.0%), and 25 acres (7.1%), 
respectively. The total of the berries and lentils was 24.6 acres (6.9%). The uncultivated or fallow was 
also interestingly 105 acres (29.6) in the Rabi season. The availability of high-value and high-water-need 
perennials (banana and mango) and staple wheat, along with lesser quantities of sugarcane, berries, and 
lentils, indicates that the system is combined and that productivity and risk are diversified. However, 
the relatively large share of uncultivated land suggests that there is some restriction on the water supply, 
land, or care options, which may limit the productive use of the soil in the command. This spatial 
arrangement results in a steep water-use gradient over a relatively small area, making water 
management difficult.  

 

Figure 3.1. UC Chukhi (watercourse 5AR command) has been derived from Landsat 8 imagery to 
produce a natural colour image, a false-colour composite, and a supervised classified land-cover map. 
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Table 3.8. Watercourse 5AR command areas are based on the location of each crop and uncultivated 

land, derived from classified Landsat 8 imagery. 

The visual representation of raw satellite imagery converted to a classified crop map is shown in 
Figure 3.1. The natural and false-colour composites highlight vegetation patterns and irrigated areas. In 
contrast, the classified image provides a clear outline of wheat, mango, banana, sugarcane, berries, 
lentils, and other crops, as well as uncultivated areas. This spatially explicit map is used to calculate 
crop-specific regions of the command. Table 3.8 provides a quantitative summary of the areas for each 
class in Figure 3.1, enabling a direct connection between land-use and water-demand calculations. 

3.4 Volumetric crop water demand 

The volumetric water requirements of crops per season were estimated using crop areas derived 
from satellite imagery (Table 3.8) and crop water requirements (Tables 3.2-3.7). It was discovered that 
wheat required 35,882.08 acre-mm, Mango required 24,861.72 acre-mm, Banana required 51,661.57 acre-
mm, Sugarcane required 23,605.45 acre-mm, Berries required 7,656.98 acre-mm, and Lentil required 
5,940.25 acre-mm (Figure 3.2). Banas, wheat, mango, and sugarcane accounted for about a third of the 
total ETc volume, relative to the others. The berries and lentils brought smaller shares, though by no 
means negligible. The results highlight that the general seasonal demand is primarily affected by high-
ETc perennial crops (banana and mango) and sugarcane, rather than wheat, even though wheat has the 
highest area. Such findings have tremendous implications for water-saving strategies. Examples could 
include the efficiency of irrigation in banana and sugarcane field, transition to partial root-zone drying 
or deficit irrigation regime where the agronomically viable scale of these crops would suffer a significant 
drop in seasonal demand, or a reassessment of the scale of these crops under extreme water stress which 
could lead to substantial reductions in seasonal demand where interventions in low-demand crops 
would only have relatively small effects. 

 
Figure 3.2 The volumetric crop water demand in the watercourse 5AR command (UC Chukhi) of 
wheat, mango, banana, sugarcane, berries, and lentil during the study season using CROPWAT-

derived ETc and satellite-derived crop area of the same. 
3.5 Water supply to the command area 

The water supplies to the watercourse 5AR command include groundwater pumped from tube 
wells and surface water diverted into the mogha outlet of the Kunner-II minor. Groundwater 
abstraction was estimated based on discharge from tube wells and hours of operation during the Rabi 
season. The total groundwater contribution was 403.04 acre-ft. Likewise, discharge measurements at the 
5AR outlet, coupled with records of running hours, yielded a seasonal surface-water supply of 430.3 
acre-ft. In this way, the total water supply was 833.45 acre-ft, consisting of nearly equal portions of 

Crops Wheat Mango Banana Sugarcane Others Uncultivated Area Total 
Area (acres) 86.8 62 49.6 25 24.6 105 354 

Area (%) 24.5 17.5 14 7.1 6.9 29.6 100 
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surface water and underground water. Such almost equal reliance on canal water and tube wells 
indicates an unmistakable tendency toward conjunctive use. Conjunctive use may be used to stabilise 
irrigation supply in the face of unpredictable canal delivery, but it may strain groundwater resources 
unless pumping is controlled and regulated. The findings thus highlight the importance of integrated 
planning that considers canal operations and groundwater sustainability. 

Table 3.9. Tube-well discharge measurements in the watercourse 5AR command 

S. No. 
Diameter 

(cm) 
X-Coordinate 

(cm) 
Y-Coordinate 

(cm) Flow type Discharge (L s⁻¹) 

1 12.7 46 43 Full flow 19.70 

2 12.7 42 47 Full flow 17.20 

3 12.7 44 45 Full flow 18.40 

4 12.7 40 42 Full flow 17.32 

5 12.7 41 45 Full flow 17.15 

Average 12.7 – – Full flow 17.95 ≈ 18.0 L s⁻¹ (0.635 cusecs) 

Table 3.10. Mogha outlet discharge and seasonal water availability 
(a) Discharge at 5AR Mogha outlet 

S. 
No. 

Diameter 
(cm) 

X-Coordinate 
(cm) 

Y-Coordinate 
(cm) 

Flow 
type 

Discharge (L 
s⁻¹) 

Discharge 
(cusecs) 

1 25.4 68 76 
Full 
flow 87.56 3.10 

2 25.4 64 73 
Full 
flow 84.08 2.97 

3 25.4 63 69 
Full 
flow 85.13 3.00 

Mean 25.4 – – 
Full 
flow – 3.02 cusecs 

(a) Discharge at 5AR Mogha outlet 

Source Volume (acre-ft) Share of total supply (%) 

Surface water 430.30 51.6 

Groundwater 403.04 48.4 

Total 833.45 100.0 
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3.6 Seasonal water losses and irrigation performance 

Seasonal water loss was estimated by comparing total water supplied (Tables 3.15-3.17) with total 
seasonal water demand (Tables 3.9-3.14). The analysis found that about 33.55 percent of the water 
flowing into the command during the Rabi season went to waste before being put to good use for crop 
evapotranspiration and leaching. This loss of around 280 acre-ft was a loss of the total supply of 833.45 
acre-ft, and the losses were as follows: on-farm application losses were 18.49 percent, and conveyance 
losses were 15.0 percent of the total supply in the watercourse network. Application losses were 
determined to be approximately 154 acre-ft, and conveyance processes (seepage, leakage, overtopping, 
and operational wastage) in the watercourse were approximately 125 acre-ft. These magnitudes are in 
line with expectations for unlined earthen watercourses and traditional surface irrigation techniques in 
non-levelled fields. The application losses are relatively significant, which indicates that the scope of 
improvement in on-farm management of water is high: precision land levelling, the use of enhanced 
channeling on the field, the use of more efficient systems of irrigation where possible, and the timing of 
irrigations based on the needs of crops rather than on recreational rotation or the visual display. The 
significant losses of conveyance also indicate that selective lining or rehabilitation of the worst reaches 
of the watercourse might produce real water savings. 

 
Figure 4.2. Seasonal water losses in the watercourse 5AR command, showing the percentage of total 

supply lost as conveyance and application losses, and the percentage that is effectively utilised to meet 
crop water demand. 

The overall supply, as shown in Figure 4.2, yields beneficial consumption and losses. It shows 
that one-third of the diverted and pumped water is put to productive use in crops, two-thirds are 
wasted, and a third is used for on-farm purposes, slightly higher than the conveyance losses. This chart-
based analysis can be used alongside numerical data to help practitioners and policymakers more easily 
understand which areas are poised to deliver the highest returns from more efficient irrigation. Overall, 
the joint analysis of satellite-based cropping patterns, CROPWAT-calculated crop water models, and 
measured canal and groundwater data has produced a consistent, season-based diagnosis of irrigation 
performance in the 5AR watercourse command. The results indicate that (i) the seasonal water demands 
are dominated by regions of perennial orchard and sugarcane, (ii) groundwater and canal water are 
slightly different contributors to total water supply as well as the losses associated with the delivery are 
slightly more than the losses associated with the application, and (iii) about one-third of the water 
delivered is wasted, and slightly less than half of the water losses refer to the application. This fact 
provides a solid basis for developing interventions at the farm and watercourse levels to increase water-
use efficiency and promote sustainable irrigation control within such a canal-command regime. 
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CONCLUSIONS 

This study revealed that the combination of satellite-based crop maps, the CROPWAT model, and 
an approximation of discharge measures is an effective and inexpensive design that can be used to 
diagnose seasonal irrigation effectiveness at the watercourse level. We have estimated the 
communication of water demand space and the seasonal volume of water lost in the 354-acre command 
of watercourse 5AR in UC Chukhi, district Hyderabad, using cropping patterns derived from Landsat 
8 imagery and quantitative supply from canals and tube wells. The results show that high consumption 
of perennial crops is the most significant factor affecting seasonal crop water demand. Although wheat 
was the main crop on cultivated land, banana, mango, and sugarcane required high water because they 
had very high seasonal ETc per unit area. Banana had a cover of about a third of the total calculated 
crop water, followed by wheat, mango, and sugarcane, with berries and lentil contributing minor but 
not negligible percentages. This will bring into perspective that a change in the management or size of 
orchard and cane lands will have a greater impact on the total water budget than a change in the 
production of lower-demand products. Water was provided to the command by surface and ground 
water in almost equal volumes during the Rabi season, with the canal being pumped by 5AR mogha 
and tube-well pumping, which supplied about half of the total 833.45 acre-ft of water supply. It is almost 
even, and this emphasis shows the de facto conjunctive use policy, roughage with which farmers buffer 
the variability of canal flows. Though this conjunctive application enhances short-term irrigation 
reliability, it also indicates that any attempt to optimise the system's functioning would need to integrate 
canal operations, the condition of water-reach conveyance, and the sustainability of groundwater 
abstraction. The cumulative supply and crop water demand were forced to be set against each other; 
therefore, about a third of the cumulative seasonal water into the command was wasted before it could 
be utilized beneficially as either evapotranspiration or leaching demand. These break-even losses 
indicate that application losses on farms were slightly greater than conveyance losses in the 
watercourse. The tendency is identical with the non-lined earthen canals as well as the traditional 
surface irrigation of non-levelled lands. It also clearly defines two complementary fields of intervention 
that must be met to attain the desired outcome: (i) selective lining or structural improvement of the 
critical watercourse reaches to reduce seepage and water wastage during operation, and (ii) improve 
on-farm water management through levelling of the land, upgrading field channels, and timely 
irrigation to adjust to the crop water requirements. Along with these site-specific findings, the research 
also raises other methodological implications. The process used in this case is grounded in free satellite 
imagery, basic climatic data, commercially obtained software (ArcGIS and CROPWAT), and simple 
discharge data. It can therefore be transferred to other watercourses and canal-command areas where 
there is no elaborate hydrometric network and continuous observation. The method can help make 
more informed water allocations, identify specific efficiency enhancements, support evidence-based 
policy choices within the framework of irrigation systems with limited data, provide spatially explicit 
crop-specific water-demand estimates, and offer explicit accounting of supply and loss at a seasonal 
scale. In conclusion, as the case of watercourse 5AR shows, (i) crop choice and area allocation, in 
particular, to high-demand perennials, is the core of the seasonal water demand; (ii) conjunctive 
utilization of both canal water and groundwater is already one of the primary features of the local 
irrigation practice; and (iii) there is a potential which can be reduced significantly by some simple 
technical and management interventions. Scaling such assessment efforts to canal-command systems 
would provide a powerful platform for maximizing water productivity, reducing strain on 
groundwater supplies, and increasing the resiliency of irrigation-intensive agriculture to water 
shortages. 
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