Optimization of Text Mining Detection of Tajweed Reading Laws Using the Yolov8 Method on the Qur'an

  • Dadang Iskandar Mulyana STIKOM CKI, Jakarta
  • Muhammad Arfan Irsyad Rowis STIKOM CKI, Jakarta
Keywords: Tajweed, Detection, Algorithm, Yolov8, Al-Qur'an

Abstract

The science of tajweed is a science that studies how to read the letters or readings in the Qur'an beautifully or well by the legal rules regulated therein. However, many people still do not pay attention to the legal rules of tajweed when reading the Qur'an, so it is not uncommon for them to make mistakes in pronunciation. From the legal rules of Tajweed reading, the slightest difference will change the meaning and intended meaning of the reading. So, paying attention to every rule of the law of reading Tajweed is very important. Therefore, considering the current technological advances, we plan a tajweed detection design using the YOLO algorithm optimized for the Qur'an. This study aims to determine and analyze the detection of text mining on tajweed reading. The method used in this study is the YOLO Algorithm method. This research uses 210 images of the Mushaf Al-Qur'an dataset, tested twice using Augmentation and Non-Augmentation to get optimal research results. The dataset underwent a training process of 138 images, or about 66%, and a validation process of 48 images, about 28%, and 24 images, or 11% of the total sample. Of the two tests using augmentation with no augmentation, augmentation testing produces the highest precision value with a value of 0.985 or 98.5% and the highest mAP50 with a value of 0995 or 99.5% for the Lafdzul Jalalah class group, with a total accuracy value of 92.94%. For testing without augmentation, the results show that the highest mAP50 value is the Lafdzul Jalalah class, with a value of 0.974 or 97.40% and an accuracy value of 91.37%. Based on optimization and comparison carried out for the accuracy value of research with augmentation of 92.94% and research conducted without augmentation is 91.37%. So, the study's results obtained an increased value of 1.57% by performing greyscale augmentation.

Downloads

Download data is not yet available.

References

Abuzairi, T., Widanti, N., Kusumaningrum, A., & Rustina, Y. (2021). Implementasi convolutional neural network untuk deteksi nyeri bayi melalui citra wajah dengan YOLO. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 624–630.
Antari, N. M. D., Suyadnya, I. M. A., & Sudarma, M. (2015). Sistem Pengenalan Seseorang Berdasarkan Bentuk Geometri Tangan Menggunakan Metode Chain Code Dan Moment Invariant. Journal SPEKTRUM, 2(3), 5–11.
Arifin, Z. (2021). Solusi Terhadap Problem IT di Pendidikan Islam. Intelegensia : Jurnal Pendidikan Islam, 9(1), 11–23. https://doi.org/10.34001/intelegensia.v9i1.2001
Armalivia, S. (2021). PENGHITUNGAN OTOMATIS LARVA UDANG MENGGUNAKAN MENTODE YOLO. Universitas Hasanuddin.
Dewi, G. L., & Armanto, H. (2015). Analisa berbagai jenis huruf komputer menggunakan algoritma berbasis chain code dalam bentuk run length encoding. Seminar Nasional Inovasi Dalam Desain Dan Teknologi Ideatech, 1121–2089.
Ding, Y., Vanselow, D. J., Yakovlev, M. A., Katz, S. R., Lin, A. Y., Clark, D. P., Vargas, P., Xin, X., Copper, J. E., Canfield, V. A., Ang, K. C., Wang, Y., Xiao, X., Carlo, F. De, Rossum, D. B. V., Riviere, P. La, & Cheng, K. C. (2019). Computational 3D histological phenotyping of whole zebrafish by x-ray histotomography. ELife, 8, 1–28. https://doi.org/10.7554/eLife.44898
Fadjeri, A., Saputra, B. A., Ariyanto, D. K. A., & Kurniatin, L. (2022). Karakteristik Morfologi Tanaman Selada Menggunakan Pengolahan Citra Digital. Jurnal Ilmiah Sinus (JIS) Vol, 20(2).
Fan, D. P., Lin, Z., Zhang, Z., Zhu, M., & Cheng, M. M. (2021). Rethinking RGB-D Salient Object Detection: Models, Data Sets, and Large-Scale Benchmarks. IEEE Transactions on Neural Networks and Learning Systems, 32(5), 2075–2089. https://doi.org/10.1109/TNNLS.2020.2996406
Hasibuan, A. I. (2014). Penerapan metode Al¬-Hira’dalam meningkatkan kemampuan membaca Alquran di SD Swasta Al-Hira’Kecamatan Medan Denai. Pascasarjana UIN-SU.
Hidayatulloh, M. S. (2021). Sistem Pengenalan Wajah Menggunakan Metode Yolo ( You Only Look Once ). i–43.
Ilyas, M. (2020). Deteksi Pelanggaran Berkendara Dengan Metode Yolo (You Only Look Once). Universitas Komputer Indonesia.
Khairunnas, K., Yuniarno, E. M., & Zaini, A. (2021). Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO untuk Mobile Robot. Jurnal Teknik ITS, 10(1). https://doi.org/10.12962/j23373539.v10i1.61622
Lusiana, L., Wibowo, A., & Dewi, T. K. (2023). Implementasi Algoritma Deep Learning You Only Look Once (YOLOv5) Untuk Deteksi Buah Segar Dan Busuk. Paspalum: Jurnal Ilmiah Pertanian, 11(1), 123–130.
Maulana, N., Sutojo, T., & Kom, M. (n.d.). Pengenalan pola buah dengan menggunakan algoritma freeman chain code. No, 5, 0–5.
Mulyana, D. I., & Rofik, M. A. (2022). Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5. Jurnal Pendidikan Tambusai, 6(3), 13971–13982.
Nugraha, R. H., Yuwono, E., Prasetyohadi, L., & Patria, H. (2022). Analisis Konsumsi Energi Listrik Pelanggan Dan Biaya Pokok Produksi Penyediaan Energi Listrik dengan Machine Learning. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 6(1), 47–56.
Rahma, L. V., & Zahroh, A. (2019). Problematika Penerapan Ilmu Tajwid Dalam Membaca Al-Qur’an Pada Peserta Didik Kelas X Sekolah Menengah Kejuruan Negeri 1 Bagor Nganjuk Tahun Pelajaran 2017/2018. Jurnal Ilmiah Innovative, 8, 2355–4053.
Riyanda, R. (2016). Pembangunan Aplikasi Pengenalan Aksara Arab Melayu Menggunakan Algoritma Freeman Chain Code Dan Support Vector Machine (Svm). Universitas Komputer Indonesia.
Rizki, Y., Taufiq, R. M., Mukhtar, H., & Putri, D. (2021). Klasifikasi Pola Kain Tenun Melayu Menggunakan Faster R-CNN. IT Journal Research and Development, 5(2), 215–225.
Sanjaya, J., & Ayub, M. (2020). Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup. Jurnal Teknik Informatika Dan Sistem Informasi, 6(2), 311–323. https://doi.org/10.28932/jutisi.v6i2.2688
Sarosa, M., & Muna, N. (2021). Implementasi Algoritma You Only Look Once ( Yolo ) Untuk Implementation of You Only Look Once ( Yolo ) Algorithm for. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(4), 787–792. https://doi.org/10.25126/jtiik.202184407
Setyawan, S. B., Pribadi, W., Arrosida, H., & Nugroho, E. P. (2021). Sistem Deteksi Pengendara Sepeda Motor Tanpa Helm dan Kelebihan Penumpang pada Dengan Menggunakan YOLO V3. Seminar Nasional Terapan Riset Inovatif, 7(1), 430–438.
Thoriq, M. Y. A., Siradjuddin, I. A., & Permana, K. E. (2023). Deteksi Wajah Manusia Berbasis One Stage Detector Menggunakan Metode You Only Look Once (YOLO). Jurnal Teknoinfo, 17(1), 66–73.
V, V., K, C. R., & C., R. A. (2022). Real Time Object Detection System with YOLO and CNN Models: A Review. July. https://doi.org/10.37896/JXAT14.07/315415
Wang, H., Wang, W., & Liu, Y. (2020). X-YOLO: A deep learning-based toolset with multiple optimization strategies for contraband detection. ACM International Conference Proceeding Series, 127–132. https://doi.org/10.1145/3393527.3393549
Published
2022-12-29
How to Cite
Mulyana, D., & Rowis, M. (2022). Optimization of Text Mining Detection of Tajweed Reading Laws Using the Yolov8 Method on the Qur’an. QALAMUNA: Jurnal Pendidikan, Sosial, Dan Agama, 14(2), 1089-1110. https://doi.org/10.37680/qalamuna.v14i2.3866
Abstract views: 344 , PDF downloads: 320